协方差的意义(协方差的计算公式)

协方差的意义(协方差的计算公式)

协方差分析的意义

当研究者知道有些协变量会影响因变量,却不能够控制和不感兴趣时(当研究学习时间对学习绩效的影响,学生原来的学习基础、智力学习兴趣就是协变量),可以在实验处理前予以观测,然后在统计时运用协方差分析来处理。

将协变量对因变量的影响从自变量中分离出去,可以进一步提高实验精确度和统计检验灵敏度。

方差是用来度量单个变量“自身变异”大小的总体参数,方差越大,该变量的变异越大;

协方差是用来度量两个变量之间“协同变异”大小的总体参数,即二个变量相互影响大小的参数,协方差的绝对值越大,两个变量相互影响越大。

对于仅涉及单个变量的试验资料,由于其总变异仅为“自身变异”(如单因素完全随机设计试验资料,“自身变异”是指由处理和随机误差所引起的变异),因而可以用方差分析法进行分析;

对于涉及两个变量的试验资料,由于每个变量的总变异既包含了“自身变异”又包含了“协同变异”(是指由另一个变量所引起的变异),须采用协方差分析法来进行分析,才能得到正确结论。

协方差有哪些定义和意义

协方差通俗理解是描述两个变量之间的变动关系。

协方差具体定义:

在概率论和统计学中,协方差用于衡量两个变量的总体误差。而方差是协方差的一种特殊情况,即当两个变量是相同的情况。期望值分别为E(X)=μ与E(Y)=ν的两个实数随机变量X与Y之间的协方差定义为:COV(X,Y)=E[(X-E(X))(Y-E(Y))]。

其中,E是期望值。它也可以表示为:直观上来看,协方差表示的是两个变量总体误差的方差,这与只表示一个变量误差的方差不同。如果两个变量的变化趋势一致,也就是说如果其中一个大于自身的期望值,另外一个也大于自身的期望值,那么两个变量之间的协方差就是正值。

如果两个变量的变化趋势相反,即其中一个大于自身的期望值,另外一个却小于自身的期望值,那么两个变量之间的协方差就是负值。

协方差属性:

两个不同参数之间的方差就是协方差若两个随机变量X和Y相互独立,则E[(X-E(X))(Y-E(Y))]=0,因而若上述数学期望不为零,则X和Y必不是相互独立的,亦即它们之间存在着一定的关系。

协方差特征值和特征向量:

一、特征:

协方差矩阵表示了样本集中在原n维空间中各个方向上的能量分布,通过对协方差矩阵求特征向量,实际上找到的是在原n维空间中的一些特定的方向,样本集的能量集中分布在这些方向上,而特征值的大小就反映了样本集中在该方向上的能量大小。

二、对于协方差矩阵计算特征向量的一个性质:

假设有样本集Xi(i=1,m),每个样本Xi的维度为n,Xi的均值为0向量,则协方差矩阵C=X*X',其中X=(X1,X2,Xn),计算C的特征向量。

三、计算特征向量的两种方法:

1、直接计算C的特征向量。

2、先计算(X)*X的特征向量v1,然后C的特征向量v=x*v1。当样本的个数m大于样本的维数n时,选用方法第二种所得到的矩阵维数较小,因此使用第二种计算量较小;当样本的个数m小于样本的维数n时,选用第一种所得到的矩阵维数小,因此使用第一种计算量小。

协方差矩阵有什么意义

1、协方差矩阵中的每一个元素是表示的随机向量X的不同分量之间的协方差,而不是不同样本之间的协方差,如元素Cij就是反映的随机变量Xi,Xj的协方差。

2、协方差是反映的变量之间的二阶统计特性,如果随机向量的不同分量之间的相关性很小,则所得的协方差矩阵几乎是一个对角矩阵。对于一些特殊的应用场合,为了使随机向量的长度较小,可以采用主成分分析的方法,使变换之后的变量的协方差矩阵完全是一个对角矩阵,之后就可以舍弃一些能量较小的分量了(对角线上的元素反映的是方差,也就是交流能量)。特别是在模式识别领域,当模式向量的维数过高时会影响识别系统的泛化性能,经常需要做这样的处理。

3、必须注意的是,这里所得到的式(5)和式(6)给出的只是随机向量协方差矩阵真实值的一个估计(即由所测的样本的值来表示的,随着样本取值的不同会发生变化),故而所得的协方差矩阵是依赖于采样样本的,并且样本的数目越多,样本在总体中的覆盖面越广,则所得的协方差矩阵越可靠。

4、如同协方差和相关系数的关系一样,我们有时为了能够更直观地知道随机向量的不同分量之间的相关性究竟有多大,还会引入相关系数矩阵。

协方差的实际意义

协方差的实际意义是:在概率论和统计学中用于衡量两个变量的总体误差。

协方差表示的是两个变量的总体的误差,这与只表示一个变量误差的方差不同。如果两个变量的变化趋势一致,也就是说如果其中一个大于自身的期望值,另外一个也大于自身的期望值,那么两个变量之间的协方差就是正值。

如果两个变量的变化趋势相反,即其中一个大于自身的期望值,另外一个却小于自身的期望值,那么两个变量之间的协方差就是负值。从直观上来看,协方差表示的是两个变量总体误差的期望。

如果两个变量的变化趋势一致,也就是说如果其中一个大于自身的期望值时另外一个也大于自身的期望值,那么两个变量之间的协方差就是正值;如果两个变量的变化趋势相反,即其中一个变量大于自身的期望值时另外一个却小于自身的期望值,那么两个变量之间的协方差就是负值。

农业科学实验中,经常会出现可以控制的质量因子和不可以控制的数量因子同时影响实验结果的情况,这时就需要采用协方差分析的统计处理方法,将质量因子与数量因子综合起来加以考虑。

比如,要研究3种肥料对苹果产量的实际效应,而各棵苹果树头年的“基础产量”不一致,但对试验结果又有一定的影响。要消除这一因素带来的影响,就需将各棵苹果树第1年年产量这一因素作为协变量进行协方差分析,才能得到正确的实验结果。

返回顶部