短期负荷预测(负荷预测项目标题)
负荷预测的内容分类
负荷预测根据目的的不同可以分为超短期、短期、中期和长期:
①超短期负荷预测是指未来1h以内的负荷预测,在安全监视状态下,需要5~10s或1~5min的预测值,预防性控制和紧急状态处理需要10min至1h的预测值。
②短期负荷预测是指日负荷预测和周负荷预测,分别用于安排日调度计划和周调度计划,包括确定机组起停、水火电协调、联络线交换功率、负荷经济分配、水库调度和设备检修等,对短期预测,需充分研究电网负荷变化规律,分析负荷变化相关因子,特别是天气因素、日类型等和短期负荷变化的关系。
③中期负荷预测是指月至年的负荷预测,主要是确定机组运行方式和设备大修计划等。
④长期负荷预测是指未来3~5年甚至更长时间段内的负荷预测,主要是电网规划部门根据国民经济的发展和对电力负荷的需求,所作的电网改造和扩建工作的远景规划。对中、长期负荷预测,要特别研究国民经济发展、国家政策等的影响。
负荷预测的预测方法
电力负荷预测分为经典预测方法和现代预测方法。趋势外推法
就是根据负荷的变化趋势对未来负荷情况作出预测。电力负荷虽然具有随机性和不确定性,但在一定条件下,仍存在着明显的变化趋势,例如农业用电,在气候条件变化较小的冬季,日用电量相对稳定,表现为较平稳的变化趋势。这种变化趋势可为线性或非线性,周期性或非周期性等等。
时间序列法
时间序列法是一种最为常见的短期负荷预测方法,它是针对整个观测序列呈现出的某种随机过程的特性,去建立和估计产生实际序列的随机过程的模型,然后用这些模型去进行预测。它利用了电力负荷变动的惯性特征和时间上的延续性,通过对历史数据时间序列的分析处理,确定其基本特征和变化规律,预测未来负荷。
时间序列预测方法可分为确定型和随机性两类,确定型时间序列作为模型残差用于估计预测区间的大小。随机型时间序列预测模型可以看作一个线性滤波器。根据线性滤波器的特性,时间序列可划为自回归(AR)、动平均(MA)、自回归-动平均(ARMA)、累计式自回归-动平均(ARIMA)、传递函数(TF)几类模型,其负荷预测过程一般分为模型识别、模型参数估计、模型检验、负荷预测、精度检验预测值修正5个阶段。
回归分析法
回归分析法就是根据负荷过去的历史资料,建立可以分析的数学模型,对未来的负荷进行预测。利用数理统计中的回归分析方法,通过对变量的观测数据进行分析,确定变量之间的相互关系,从而实现预测。 20世纪80年代后期,一些基于新兴学科理论的现代预测方法逐渐得到了成功应用。这其中主要有灰色数学理论、专家系统方法、神经网络理论、模糊预测理论等。
灰色数学理论
灰色数学理论是把负荷序列看作一真实的系统输出,它是众多影响因子的综合作用结果。这些众多因子的未知性和不确定性,成为系统的灰色特性。灰色系统理论把负荷序列通过生成变换,使其变化为有规律的生成数列再建模,用于负荷预测。
专家系统方法
专家系统方法是对于数据库里存放的过去几年的负荷数据和天气数据等进行细致的分析,汇集有经验的负荷预测人员的知识,提取有关规则。借助专家系统,负荷预测人员能识别预测日所属的类型,考虑天气因素对负荷预测的影响,按照一定的推理进行负荷预测。
神经网络理论
神经网络理论是利用神经网络的学习功能,让计算机学习包含在历史负荷数据中的映射关系,再利用这种映射关系预测未来负荷。由于该方法具有很强的鲁棒性、记忆能力、非线性映射能力以及强大的自学习能力,因此有很大的应用市场,但其缺点是学习收敛速度慢,可能收敛到局部最小点;并且知识表达困难,难以充分利用调度人员经验中存在的模糊知识。
模糊负荷预测
模糊负荷预测是近几年比较热门的研究方向。
模糊控制是在所采用的控制方法上应用了模糊数学理论,使其进行确定性的工作,对一些无法构造数学模型的被控过程进行有效控制。模糊系统不管其是如何进行计算的,从输入输出的角度讲它是一个非线性函数。模糊系统对于任意一个非线性连续函数,就是找出一类隶属函数,一种推理规则,一个解模糊方法,使得设计出的模糊系统能够任意逼近这个非线性函数。(1)表格查寻法:
表格法是一种相对简单明了的算法。这个方法的基本思想是从已知输入--输出数据对中产生模糊规则,形成一个模糊规则库,最终的模糊逻辑系统将从组合模糊规则库中产生。
这是一种简单易行的易于理解的算法,因为它是个顺序生成过程,无需反复学习,因此,这个方法同样具有模糊系统优于神经网络系统的一大优点,即构造起来既简单又快速。
(2)基于神经网络集成的高木-关野模糊预测算法:
它是利用神经网络来求得条件部输入变量的联合隶属函数。结论部的函数f(X)也可以用神经网络来表示。神经网络均采用前向型的BP网络。
(3)改进的模糊神经网络模型的算法:
模糊神经网络即全局逼近器。模糊系统与神经网络似乎有着天然的联系,模糊神经网络在本质上是模糊系统的实现,就是将常规的神经网络(如前向反馈神经网络,HoPfield神经网络)赋予模糊输入信号和模糊权。
对于复杂的系统建模,已经有了许多方法,并已取得良好的应用效果。但主要缺点是模型精度不高,训练时间太长。此种方法的模型物理意义明显,精度高,收敛快,属于改进型算法。
(4)反向传播学习算法:
模糊逻辑系统应用主要在于它能够作为非线性系统的模型,包括含有人工操作员的非线性系统的模型。因此,从函数逼近意义上考虑,研究模糊逻辑系统的非线性映射能力显得非常重要。函数逼近就是模糊逻辑系统可以在任意精度上,一致逼近任何定义在一个致密集上的非线性函数,其优势在于它有能够系统而有效地利用语言信息的能力。万能逼近定理表明一定存在这样一个可以在任意精度逼近任意给定函数的高斯型模糊逻辑系统。反向传播BP学习算法用来确定高斯型模糊逻辑系统的参数,经过辨识的模型能够很好的逼近真实系统,进而达到提高预测精度的目的。
负荷预测是什么意思
负荷预测
load forecasting
根据对电力系统负荷的历史数据分析及今后发展趋势的判断,预报今后一段时间内电力负荷的变动情况。对电力企业而言,负荷预测是其制订供电规划、燃料规划、发展规划、资金财务规划等的基础。负荷预测的内容包括电量预测、电力预测(最大负荷预测)、日负荷曲线预测和持续负荷曲线预测等。
负荷预测可分 4种。①近期预测。预测1~2天内的负荷,主要供电力调度部门安排日调度计划。②短期预测。预测1~2年内的负荷,主要供电力部门制订最低发电成本运行计划、机组检修计划、燃料计划及评估水电站水库与河流的流量情况。③中期预测。预测今后4~6年(甚至 8年)的负荷,供制订电源发展规划参考。④长期预测。预测今后10~30年的负荷发展,用来规划协调发展战略。
负荷预测受人口增长、经济发展速度、产业结构变化、气象条件等因素的影响,除尽量选用可靠的分析方法外,预测精度还取决于预测者的判断能力。预测方法主要有外推法和相关法两类。前者是根据历史的负荷资料推算出未来负荷变化情况。为此可先写出趋势曲线的解析函数,再由趋势曲线和历史数据的曲线进行拟合,用最小二乘法术趋势曲线解析函数的各个系数,由确定了的趋势曲线即可求得未来负荷。后者是找出影响负荷大小的主要因素作为自变量,以负荷变化为因变量,写出回归分析法的数学模型。回归系数则由历史数据求出。根据这些因素的未来数值即可推算出未来的负荷数值。电子计算机已成为负荷预测中的重要工具。